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SECTION 1

INTRODUCTION

In Reference 1, far field conditions for small periodic

oscillations superimposed on a subsonic flow have been derived.

They express the effect of the distant field on the portion of the

flow field that is to be treated numerically. One obtains linear

relations in which the potential and its normal derivative at all

points of the far boundary of the computed part of the flow field

appear simultaneously. We speak of global conditions since all

boundary points are involved. Approximate local far field

conditions have been derived by Bayliss, Gunzberger and Turker

(Reference 2).

The present report clarifies by means of an example some of

the questions which arise in the application of these conditions;

of particular interest are the errors introduced by the discretiza-

tions which are necessary in a numerical treatment. The example

is rather simple; it can be treated analytically. The analytical

properties will be helpful in the discussion but, since one wants

to imitate more realistic problems, they will not be used in a

numerical approach. Actually, the numerical solutions play a very

minor role. The problem has been programmed and solved for different

boundary conditions, but only to check the feasibility of the approach,

not to provide a production routine.

A comparison of the results so obtained with exact solutions

will not be carried out because it does not allow us to separate

different error sources (errors due to the discretization in the

differential equations, in the far field conditions, and in

satisfactory boundary conditions at the profile). Instead, we

shall examine how the discretization affects different eigenfunctions.

In realistic problems the differential equation governing

unsteady perturbations is not identical with the one for perturbations

in a parallel subsonic flow, in particular not in the vicinity of the

profile. This does not limit the scope of the present study because

in the distant field, the latter gives an acceptable approximation.

.. .. 1_ ,i.. . ... ' ., h : _ £ _ :



SECTION II

SOME PRELIMINARY OBSERVATIONS

We consider the unsteady two dimensional field generated by

a plate which extends along the x axis of a Cartesian system of

coordinates x,y from x = -1 to x = +1. Along the plate the velo-

city normal to it, that is the normal derivative of the oscillating

part of the potential is prescribed. For an infinitely thin

oscillating plane the value of py at its upper and lower side are,
of course, the same, but we shall allow for a more general situation.

The problem has a number of symmetries which allow one to separate

it into smaller problems; in the subproblem treated numerically here

the potential is symmetric with respect to the x axis. The

components of the perturbation velocity then have opposite signs at

the upper and lower side of the plate. To complete the formulation

of the boundary value problem one must prescribe at a distance the

"far field" conditions under study in the present report.

The equations for the distant field can ultimately be reduced

to the Helmholtz equation

xx yy

It arises from the equation of two dimensional acoustics

xx +  yy - tt = 0 (2)

by setting

4(x,y,t) = p(x,y) exp(ipt) (3)

In this formulation it is assumed that the time has been scaled

so that the velocity of sound is 1. The time for one period of

the oscillatory motion is then T = 2ir/I.i; this formula gives also

the wave length (because of the choice of the velocity of sound).

2



To get some appreciation for the magnitude of ji we mention that

its value is 7 for a wave with a length equal to the width of the

plate (which is 2 in the present example).

If the plate is embedded in a subsonic parallel flow, one

must make several transformations in order to arrive at the

Helmholtz equation (see Ref. 1). If in such a flow the plate

oscillates with a circular frequency, v, then one obtains (after

the transformation to the Helmholtz equation)

vaL _ L2 2_2 2 (4)
a -U a(l-M

2

where U is the free stream velocity, "a" is the free stream

velocity of sound, M = U/a is the free stream Mach number, and L

is some characteristic length (here the half chord of the plate).

During one period T = 27/v a perturbation travels strictly

upstream or strictly downstream by the respective wave lengths,

via (2/\)a(l-M) and (2r/v)a(l+M).

Frequently a reduced frequency, here denoted by ii', given

by

' \ L/a (5)

is introduced. Then

M
-M2  

(6)
1-M

The frequencies v are determined by the physical situation

under investigation.

The transformation to the Helmholtz equation generates a

wave pattern in which the wave length is the same in all directions.

For a given v one has the following expressions for the wave length

3



Helmholtz equation 2T/j, = (2r/%L)a(l-M2

waves travelina upstream 2 )  -(I+M)1
in a parallel flow

waMs'Z traveling downstream (27_/ ))al+M)(2/L)a(lM )(l-M)
in a parallel flow

The wave length for the Helmholtz equation is the harmonic mean

between the wave lengths for upstream and downstream traveling
waves.

The fact that after the transformation to the Helmholtz

equation the wave length is larger than for waves traveling upstream

in the original field is of practical interest. The grid points

of a finite difference net must be close enough to reproduce the

waviness of the unsteady field. After the transformation to the

Helmholtz equation a grid which is coarser than that of the

original problem is admissible. Of course, for small values of

and Mach numbers not too close to one this is less important, for

the wave lengths are large to begin with and the solution resembles

in essence that of the Laplace equation. But, under different

circumstances, it may be advantageous to carry out such a

transformation even though the differential equation for the vicinity

of the profile differs from the Helmholtz equation.

4
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SECTION III

TRANSFORMATIONS

In a numerical approach one must provide a net in which the

discretization is carried out. One might use a rectangular net

in the physical plane. An elimination strategy for this purpose

is described in Reference 3. In Reference 1 a different net

obtained by a conformal mapping has been suggested. For practical

purposes the first net is probably preferable because it retains

the orientation imposed by the free stream direction. The net

of Reference 1, used here, makes it possible to study the problem

in greater detail. The general conclusions do not depend upon the

choice of the net.

The starting point is the Helmholtz equation, Eq. (1).

Let

x + iy z (6)

+ ir (7)

and

= g(")

let

g' dg/di. (8)

where g is an analytic function. Then one obtains

2 2b
+ n + j g' = 0 (9)

We choose specifically the familiar mapping

c() :cosh , (10)

Then

x = Re g = cosh cos n
(11)

y = Im g = sinh sin

5



for , - 0 one obtains y = 0 and x varies from -1 to +1 and back

as n varies from 0 to 27r. This is the map of the plate surface.

Both, the lines n = 0 and q = 27 map into the x axis from x = 1

to x = -, the line n = m maps into the x axis from x = -1 to - .

The whole flow field is mapped into a strip of width 27r which

extends from = 0 to C = -.

One obtains, by eliminating n

2 2
x + = = 1

cosh 2 sinh 2

and by eliminating

2 2

cos r) sin n

The lines = const and n = const are, respectively, ellipses and

hyperbolae with foci at x = +1 and x = -1.

A number of formulae are listed for future use. One has

g' = sinh (W) (12)

2*Ig I2 (sinh ,) (sinh*

where the star denotes the conjugate complex. Writing the

hyperbolic functions in terms of exponential functions and

carrying out the multiplication one finds

Ig'I2 1/2 (cosh 2F - cos 2n) (13)

We also introduce polar coordinates r,O in the physical plane

qt) = x + iy r exp iO (14)

Then

r : g(i) I g(r)g*(,) 1/2

rr



and ultimately,

r = [i/2(cosh(2F) + cos(2n)] I/2 (1/)

For large, one has

cosh 2F % 1/2 exp (2F)

and therefore

r % 1/2 exp E

one observes that

exp(i6) = x+i'y g(r) ()r r g(;) (16)

Hence, asymptotically for large values of ,

exp(io) ', exp(in) (17)

We note that, because of Eq. (16)

cos(n6) = Re(exp(io))n = Re[(g(),/r)n ]

(18)

sin(n6) = Im(exp(iO))n = Im[(g(C)/r) 
n

These expressions are readily evaluated by complex arithmetic.

Considering x and y as functions of E and n, one obtains

x/D =Re g'

Sx/n = -Im g'
(19)

y/3c= Im g'

9y/ n =Re g'

7



Furthermore, if F and ri are considered as functions of x and y,

''/")x = Ig' I-2  Re g'

/3 g' -2 Im

(20)

T h/ 'x = - g ' Im g '

q/DY = Ig' - 2 Re g'

Since

log g = log r + iO

one obtains in analogy to Eq. (19)

3 log r/DF = Re(g'/g)

. log r/Dn = -Im(g'/g)
(21)

O/D = Im(g'/g)

2 0/ T = Re(g'/g)

By substituting Eq. (14) into

g' Re g' + i Im g'

g Re g + i Im g

one finds

g'/g = (l/r)[(Re(g') cos e + (Im(g'))sin 0

+ i((Im(g')cos 0 - (Re(g') sin 0)] (22)

One has, specifically

g- sinh
g cosh

8



Introducing

exp = u (23)

and separating the real and imaginary parts one obtains

2 -2
g- u - u + 2i sin 2n (24)

g u2 + u- 2 + 2 cos 2 n

Hence, asymptotically, for large u

Re(g'/g) = 1

Im(g~g) = 2u
- 2 sin 2n (25)

Substituting Eq. (13) into Eq. (9), one obtains

+ c) + (2 /2) (cosh 2 - cos 2r)) = 0 (26)

Replacing by u, (Eq. (23)), one obtains a form that is more

convenient for asymptotic considerations and in addition gives a

suitable mesh for numerical work

1uu + u + u-2tl + 2[(1+u- 4)/4 (u- 2/2)cos(2q)] 0 (27)

9



SECTION IV

PARTICULAR SOLUTIONS

The far field corditions (for the Helmholtz equation), Eq. (57)

of Ref. 1, specialized to the case of plane flows is given by

f[w(xy) n (X,y) - Wn (x,y) (x,y)]ds = 0 (28)
C

Here C denotes the far boundary of the computed part of the flow

field. The subscript n denotes the derivative normal to this

boundary, ds is the line element, P, defined in Eq. (3), is the

potential expressing harmonic perturbations. In the distant

field satisfies Eq. (1), in the near field, it will in general

satisfy a more complicated differential equation. The functions w

have the character of test functions, they satisfy Eq. (1) at

least in the distant and usually also in most of the near field.

In addition, we define the test functions used in the present report.

They must satisfy the far field conditions. One set is already

given in Reference 1.

'2' cos mO
X H 2) (1jr) s mo (29)M1 =m Hm  sin mO

The second set is obtained by a product hypothesis in the ,q plane,

namely

w = k Or f( )g(n) (30)

Introducing a separation constant Xk one then obtains

d2f k( 2

+ (-A + - cosh (2) ) = 0 (31)

d 2
2dg 2

+ k 2 (2-))gco= 0 (32)

d

101
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The second of these equations (with a different normalization of

the constant p2 ) is the equation for Mathieu functions, the first

one is that for radial Mathieu functions. One might refer to the

literature for further developments, but for the present purposes

it is nearly as convenient to derive the necessary equations

directly and to generate the information needed by the computer.

The expressions (29) and (30) can, of course, also be used

to represent the functions ( in the distant field.

The periodicity conditions for ( carry over to the functions

One must, therefore, determine the separation constants X in

such a manner that

gk(0) = gk(
2 
7T)

and

dgk/dnj = dgk/dtI (33)
Ti=0 q=2n

The operator of Eq. (32), together with the periodicity

conditions (33), is self adjoint. The eigenvalues Xk are real, the

eigenfunctions are real and orthogonal to each other. The symmetries

of the problems suggest the following hypotheses

(1) a(1 ) 2-1/2 + E a ()gkl,k + a ,k c s ( £ 2 n

Z=2

(2)
(2) Z a (k cos(29.-l)n)

k =1

(34)

gk =/ Q ,k
- Z sin(2[n)
;=1

(4) (4)
q = a sin((2-l) n)

k,11



The individual functions occurring in the right-hand sides of

Eq. (34), including the constant term in the first expression,

have the same normalization constant 7 over the interval 0 < l < 27.

The expressions Eqs. (34) are substituted into Eq. (32). Collecting

the individual Fourier components, one obtains four separate(i) i=i 4 W obn
systems of equations for the constant aik, i 1,.. 4. We combine

the constants a.i) (for fixed values of i and k) into a vector'( i )  t ,k M.
ak (whose Z component is a k)) Then these problems can be

ak (hose compnen

written in the form

M(i) +(i) W -i (i)= (35)

the matrices M(i) are given by

M(i) = D(i) + (1 2 /4)M(iIl)

where the D(i) 's are diagonal matrices with

D(I ) = (n 2
D) (2n-2) 2 n = 1,2,...
nn

11D(2) = 2

D ( 2 )  (2n-l) 2  n = 2,3,...
nn

D(3) (2)
D = (2n) 2 n = 1,2.3,...nn

D ( 4 )  =0
11

D ( 4 ) = (2n-l) 2  n = 2,3,...
nn

The matrices M i ' l ) are symmetric. One has

M (il) = M = 21/2

12

Mi ' l) = M(i ' l) = 1 n = 2,3 ... (36)
n,n+l n+l,n

12



M M 1 , n=l,2,..., i = 2,3,4 ....
nn+l n+1,n (36) continued

all other elements of the matrices M i'' ) are zero.

Wi th M~lLet A be a matrix whose k column is given by ak and
Wi thWk

let A be a diagonal matrix with the k element k.Then
one can write

M(i)A(i) - A i)(i) = 0

If an eigenvalue routine for matrices is available, (best a routine

for banded matrices), then numerical solutions to the problem

(Eq. (35)) are readily obtained by truncating the infinite matrix.

In the present context, only a limited number, n, of eiqenvalues

and eigenvectors, ai) is used. The infinite matrix is truncated

to an m by m matrix where m is chosen large enough so that the

coefficients a (k = 1,2, .n) is smaller than an assigned small
m, k

number -, while the largest coefficient is normalized to 1, say.
-5

In our computations, carried out with n = 5 and c = 10 , it was

sufficient to take m = 9 if o .i 4.

The Mathieu functions gk are nearly monotonic (not more than

one minimum of the absolute value and no maxima) in the region
2where ' - (; /4) cos 2 1 -, 0; they are oscillatory where thisK 2

quantity is larger than zero. If ti is not small, one has a nearly

monotonic region for the first eigenvalues in the vicinity of n = 0

and p = -. In the vicinity of r = /2 and r, = 3-;/2 the functions

are always oscillatory. The oscillatory regions grow as )is

increased.
C i)obandfoth

For the separation constants ik obtained from the

eigenvalue problem one must solve Eq. (31) for the radial Mathieu

functions. For I sufficiently large these functions are always
2oscillatory, because contribution (1! /2) cosh (2') makes the

coefficient of f positive. The particular solutions which

represent outgoing waves are found by studying the asymptotic

behavior for large values of . It is practical to replace

13



by u, (Eq. (23)), Then one obtains from Eq. (31).

d2f W di )  2 A(i) 2k + 1 k + ( - - k + P ) f W

du 2  u du 4 u2 4u4 k (37)

The form of the dominant part of the coefficient of f i) suggests
k

a hypothesis

fk )(u)exp(-i(/2)u) (38)

Outgoing waves are obtained by choosing here the negative sign in

argument of the exponential function, because the argument of the

exponential function in the hypothesis (3) has the positive sign.

Then one obtains

d 2f kCi) 1df (i)Ak 2+ ( i ) k + 0 2 i]  0 (39)
2_ u __- 2 -2k + 13 4 f

du2  u 4u4

In subsequent formulae the indices k and i will be omitted. A

formal development

-1/2 c u-n (40)f =u c n
0

leads to the recurrence relation (obtained by collecting terms

with power u - (1 / 2 ) 
- (n-l)),

ipn cn = cnl (A - (1/2 - n) 2 ) ( 2/4)cn- 3  (41)

According to the hypothesis (Eq. (40)) all coefficients with

negative subscripts n are zero. The last equation is therefore

satisfied for n = 0. (This shows that the factor u-1 / 2 in Eq. (40)

is correct.) The coefficient c0 is taken to be 1. From there on,

one proceeds to larger values of n. The series is semiconvergent.

If it is terminated after a finite number of terms, then the error

can be expected to be of the order of the first neglected term.

14



This determines how many terms and which minimum value of u one

must take in order to obtain an assigned accuracy. This procedure

works well provided that the value of p is not too small.

For a value of u chosen according to this discussion one

computes f and df/du. With these initial values one then integrates

Eq. (37) in the direction toward smaller values of u. For larger

values of u, the values of f and df/du can be computed directly

from the asymptotic representation derived here. Notice that fk

and dfk/du are complex.

Eq. (37) is linear, it therefore can be reduced to a first

order differential equation. One sets

p(u) = (df/du)/f(u)

or (42)

df/du = p(u) f(u)

Hence

d 2f/du 2 = (dp/du)f(u) + p(u)(df/du)

= [(dp/du) + p2 (u)]f(u)

One then obtains from Eq. (37), the following Ricatti equation

dp 2 1 2 + !_2__2-u+p +-p+(+ - = 0 43)
u 4 u 4u4  (

Once p(u) has been found one obtains f(u) by a quadrature

u

log f = p (v) dv + const (44)
1

This procedure may be numerically advantageous especially if only

(df/du)/f(u) is needed, for the function p is likely to be smoother

than the function f. But this is merely a technicality.

15



In the present problem the particular solutions in terms

of Mathieu functions are natural because a series in these particular

solutions (with coefficients determined by the boundary conditions

at the plate) converges throughout the flow field. One thus obtains

a representation of the flow field and a formulation of the far

field conditions with which other approximations can be compared.

To a large extent this observation is valid also for problems

in which the equation obtained by transforming the basic equation

differs somewhat from the Helmholtz equation. The use of a

representation of the field in terms of Mathieu functions gk (i) (fl)

need not be restricted to theoretical discussions. For practical

applications one must, of course, first provide representations
of the functions gki Walu

oftefucinsk~ (9) and of f k) (u)/df k 7du) for the value

of u at which the far field conditions are applied. This can be

done by means of the relations derived above.

In the region r > 1 the particular solutions k, (Eq. (30))

can be expressed in terms of the particular solution x(r, ),

Eq. (29). In principle one will evaluate a particular solution

C(i) along some curve i = const (r 1 1), and then represent it

in terms of the functions X, by means of a Fourier analysis with

respect to C. The result has the form

i) (45)

Certain coefficients will be zero because of symmetry properties.

The coefficients Yk are constant. The values of the constants,k

(not needed in the future discussions) are readily obtained if

one carries out the above matching procedure along a line of u = const

in the limit u .. . Consider, for instance One has,

according to the first of Eqs. (34), using the representation of

fk given by Eqs. (38) and (40)

(1) (l)( )(I = i (r) fil) (u)'k = gkfk (u

: (a (I) 2-1/2+ i ()-/(a(] 2-_12 a ,k cos ((2 £-2) )1 ] -/ exp (-i (I/2) u)

L.k ,k
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We write Eq. (4t) in a form where the notation for the coefficients
C is analogous to that for the coefficient in "a" in the last
equation

co

(1B() (2) (r 1 2k) i (2 (r) + , k H 292(jr)cos((2 _2)C)

Z=2

One has for u large

r -- u/2, 0 %

anct

H (. r) (xp[i (/2) (k + . /2k 21 (2/-Ir

One then obtains

(1) _ ) 2-1/2 1/2:~ k - 2~ (112) (ITr) exp(-i(7/4)

(46)
(1) 1) 1/2ak 1/2) exp[-i(T/2) (2Z - 2 +

17
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SECTION V

EVALUATION OF THE FAR FIELD CONDITIONS

Our discussions will be based on a Jiscretization of the

differential equation in the u-ri system. Accordingly, one must

express the far field conditions (Eq. (28)) in terms of these

variables. One has

n qrad - e n x cos(n,x) + sin(n,x)

and

ds : -dx sin(n,x) + dy cos(n,x)

n ds ,dy dX (47)

where e is the unit vector normal to the contour C; (n,x) denotes

the angle between the normal and the x-axis, and dx and dy are

the components of a line element along the curve C, which is now

civen by an ellipse u = const. Then, from Eq. (19)

dx = -lm(g')dn

(48)

dy Re(g')dni

x 7 x ' x
(49)

y + <
y 7 y y

Substitutino Eq. (48) and (49) into Eq. (47) and using Eqs. (20)

and (23), one finds that along a line u = const

ds = d = uq u dn (50)
n u

Analogously,

d ds u , d Tjn u
18
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If both and w are considered as functions of u and q, then

one obtains as far field conditions

2 R

f2 ( u - wu )dn =  0 (b1

Substituting here the expressions k' Eq. (30), one obtains

fk(u) f Qk(h) u(u, l)dl - f (u) J gk() (u,r)dr, = 0 (52)

0 0

where the integration is to be carried out along the line u = const

which gives the contour C. The values of fk(u), fTu) and the

functions 9k(9) are considered as known.

In an alternative derivation of the last equation one would

carry out a Fourier decomposition of u (u,n) and (u,rj) (u = const)

in terms of the system of orthogonal functions gk(n) and postulate

that each of the components represent an outgoing wave. This

derivation may appear simpler, but it is applicable only if the

contour C is a line u = const while in principle the formulation

(28) is valid for any contour.

Further formulae are needed, if one chooses for the test

functions w in Eq. (28) the expressions Xm defined in Eq. (29)

Xm = H ( 2 ) (ir) cos(m[L)m

We assume that a routine for generating Bessel functions of real

argument is available. Let Ym (z) denote Bessel functions of the

second kind. One has

H ( 2 )  (z) = J (z) - i y (z) (53)m m m

19
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We note the following relations

(2) =d(2(2(2

(z)l = dH(2)/dz =  1/2 H ( 2 ) (z) - 1/2 H (2) (Z)m m m-1 Nm+l ( 54 )

11(2) (z) + H(2)(2
rni + m+l(Z) = (2m/z)H (z) (55)

In evaluating

2
f Xm n ds

one uses, again, Eq. (50) to express n ds. The radius r and the

angle 0, which are needed in the evaluation of Xm are expressed

in terms of n (and u) by Eqs. (15) and (16), the trigonometric

functions of 0 ultimately by Eq. (18). It is best first to compute

C = + in = log u + in

and then to proceed with complex arithmetic (along the curve C

for which the evaluation is carried out, one has u = const.)

In addition, one must evaluate (dX m/du)ds. One has

d3 1 d
d (m)dS = H(Xm)r d(, (X r

With Eq. (21) one then obtains for a line u = const

dn( m)dS = ) (X )r Re(-) + - (X) Im (2) d n

Hence, after substitution of the specific expressions (29)

d (, )ds = 'r: H(2 os(mil)Re(--) - m H(2 ) sin (m0)Im(!)1 dT (56)d-n ( m m m )

An alternative, more symmetric form, is obtained by using

Eqs. (54), (55), and (22)

20



d (2)
dn(xm)dS = (ji/2) tI (1ir) [cos((m-l) O)Re(q') - sin((m-l)) )Im(q') I

-H(2) (l;r) Icos( (m+l) ')Re( gj') + sini(i(i+1 Im(q' &

Now the integral Eq.(51), with (, given by m can be evaluated. One

needs for this purpose Eqs. (50) and (56) or (57).

A formula for the anproximate far field conditions of Bayliss,

Gunzberger and Turkel is obtained by the following considerations.

The fact that particular solutions representing outgoing waves in

terms of Mathieu functions have the asymptotic form for large

values of u

-1/2 - 3/2,k(un) = gk (r)exp(-i()1/2)u)[u + C , k  
- /  + .

(see Eqs. (38) and (40)) imoiies that ' is asymptotically (jiven

by

= exp(-i(;i/2)u)[u - 1/2 h1 (q) + u - 3 / 2  h 2 ( ') + .. ( 58)

where h1 (9) is arbitrary and function hi, i I are expressed in

terms of functions h. and their derivatives with subscripts j i.3
The operation

+ -L+ + 1+ --

applied to the first two terms in Eq. (58) gives zero for every

value of q. Writing this operation in detail, one obtains

3 + iD) + 2+ + 
3  0 59)u u4 4u2 2 u

This equation is satisfied for any function which has the form
2 2of the first two terms in Eq. (58). The term 2/u2, which does

21



not fit the concept of a boundary condition for a second order

partial differential equation is eliminated by means of the

governing Eq. (27). Then one obtains

2 +1 + F +  2 2 2
u( cos 2 + 2u 2 44 =

(60)

This condition is applied along a line u = const for 0 < n < 27.

The presence of r can be taken as an indication that this

formulation, although it has local character, is an approximation

to conditions of a global nature. If one forms analogous conditions

on the basis of additional terms in Eq. (58), then one encounters

higher derivatives with respect to p.

22
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SECTION VI

RELATION BETWEEN DIFFERENT FAR FIELD CONDITIONS

It is convenient to symbolize the function (,) , . ( ) , (,)
u

u(0), ,(1), xu(00 and cos mij (or sin mn), which are actually

elements of a function space, by vectors. The integrations needed

in the far field conditions are then considered as scalar products,

which will be written as products of a row and a column matrix.

One of the far field conditions then appears in the form

(uu, ) (u u uI) - ] i (u -r 0

L .L I

H{ere one must substitute for (j(n) all functions of either the set

k(:) or the set xk(q). Combining symbolically these row vectors

into matrices, one then obtains

(u, ) - ,u U ) - - 1k (u, T) U )) (u , ) = 0

-j L J. . . L

(61)

and

k (u, u uU, ) - Xk u (u, n) ' i (u, ) = 0

(62)

In all of these equations u is constant. Because of the special

form of the functions k (Ea. (30)), one can rewrite Eq. (61):

D B Cu(U,P) - D2 B '(un)j = 0 (63)
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where D1 and D 2 are diagonal matrices in which the elements Dlkk

and D2,kk are respectively given by fk(u) and f'(u' and where

B = I () (64)

Because of the orthogonality of the functions gk(q) one finds

that the eigenv.ctors Pk(n) of the eigenvalue problem

D 1B kq)- DI 2 =k n 0 (65)

are given by

pk(,) g k (66)

and that the iqenvalues are

D kk fk (u)

k D2,kk f (u)

The relation between the formulations Eqo. (61) and (62) is

established on the basis of Fo(. (4 ) which is now written in the,

form

[i 3 [ [u]
k (U'' k .(u '.

where ! is a vecto in the ordinary sense, for which the th

component is o;ivn by . Hence

k, ,k

' t][ (J,) (68)
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where - denotes a constant matrix in the usual sense for which

the element with subscripts k and .' is given by 2k," on. rO20n01/iz,

by substituting the last relation into Eq. (61), that Eq. (62) arises

by premultiplying Eq. (61) by the matrix [Q). The matrix (I:] is well

behaved. The relative eigenvectors and eigenvalues of the two

matrices occurring in Eqs. (61) and (62) are therefore the same.

After a discretization this result will hold only approximately,

the deviations from the ideal case will serve to characterize, the

effect of the discretization.

In discussing the approximate far field conditions of Bayliss,

Gunzburger, and Turkel, Eq. (60), it suffices if one considers one com-

ponent of the development of ;(u,n) and qf, (u.n) along a line u = const

with respect to the functions gk(n). We assume accordingly that

%(u,r) = qk(u) gk(n)

then (69j

Un(U, 11) =  q k (U) g k (n)

The function ak(u) replaces the function fk(u) in En. (30). Then

one obtains from the approximate far field conditions Eq. (60)

d2

dqk 2 + 1 gk 2 3 o 3i. 2
-+ + + cos 2 +- 41 k1 : 0

-u k Uk u2 dr 2 4u2  2u2  2u 2 4u

and by substitutinq Eq. (32)

dqk 2 3i 2 2
2 + il') + k( + - + - 0 (70

du u ku 4u 2 2 u 2 4 04

The same relation is obtained if one assumes that q has the fnrc

-l /2 -< ,2
( U ) -- ( U ) e>:n(-i ( L2) XT)

i .! k



where a and a2 are arbitrary constants. Any expression of this

form satisfies the second order differential equation

d 5L i P ) (- + 4
+2 ;u +y-~~q(udu 2u au 2 ki

In the derivation of Eq. (60), the condition has been imposed

that (u,n) (here given by Eq. (69)) satisfy the partial

differential equation (27) at the value of u which gives the

curve C. This leads to Eq. (37) with fk(u) replaced by

qk(u). Eq. (70) is then obtained by eliminating from the lastd2q
expression d qk(u)/du by means of Eq. (37).

The eigenfunctions pertaining to the approximate conditions

Eq. (60) are again the functionsg(n) , but the eigenvalues

fk(U)/f(u) are replaced by the expression obtained from Eq. (70).

This equation arises by assuming that the function gk(u) which

replaces fk(u) has the correct asymptotic form, and satisfies

the differential equation for f for the chosen finite value of u.
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SECTION VII

DISCRETIZATION

So far the far field conditions have been formulated as if

the functions % involved can be represented exactly, and, at

least in principle, it has been assumed that the set of test

functions to be used in the far field conditions is infinite.

Actually, the functions d, must be approximated by means of a

finite number of expressions and the set of test functions for

the far field conditions can only be finite.

An ideal case arises if satisfies the Helmholtz equation

even in the computed part of the flow field. Of course, one

would then proceed analytically, but this case serves well in

comparinq different formulations. If one represents the solution

: by a superposition of particular solutions k (defined in

[c,. (30)), the lelmholtz equation and the far field conditions

are satisfied. To satisfy the boundary conditions at the plate

one must use an infinite series in these particular solutions.

This series converges throughout the flow field. In practice, one

will truncate the series. The only error which arises here is

caused by the approximation to the boundary conditions at the

plate.

In cases of practical interest, the equation obtained by

transforming the original problem differs from the Helmholtz

equation, particularly in the vicinity of the plate. (It is of

course assumed that at great distances the transformed equation

is very close to the Helmholtz equation). The transformation of

the flow field to a half infinite strip in the ,r] plane may

nevertheless be practical, as the transformation provides a

suitable mesh in the physical plane. The fact that in this report

the analysis is carried out in the , (or rather in the u,?)

system ought to be considered as incidental; it facilitates the
integirations necessary in the formulation of tile far field

conditions.
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In the u,n-plane, is periodic along lines u = const. For

a function which, in addition, is analytic along such lines, a

representation in terms of analytic periodic functions has excellent

convergence properties. (The coefficients a (sa) of a Fourier
n

series decrease for sufficiently large n faster than any negative

power of n.) One such representation is by means of a truncated

series in Mathieu functions

) qk(u) gk(n) (71)

where, so far, the coefficients qk are unknown functions of u.

If the problem is governed by the Helmholtz equation, then this

hypothesis leads back to a representation of by a superposition

of functions J)k* The only errors arise because general boundary

conditions at the plate cannot be satisfied exactly by a truncated

series.

For a more general differential equation one is led to a

system of second order ordinary differential eouations for the

functions ak(u). At large distances the functions qk(u) will have

the same behavior as the functions fk(u), which is determined

by Eq. (37). For u large,one has approximately

fk = u-1 1 2 exp(-i(i/2)u)

This means that the relative maanitude of these functions for

different values of k remains the same (unless k is very large,

then the asymptotic development is not applicable). Therefore,

the number of functions gk(n) in the representation of

cannot be reduced as one proceeds from intermediate to large

values of u. Such a reduction would be possible for the Laplace

e(iuation. More functions gk(n) may be needed close to the plate

,n order to express local effects of the boundary conditions.

To reduce from a certain value of u on the number

of functions qk' one will set functions gk(u) for the

Pxi)ressions that are to be disregarded, equal to zero. This
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implies that at this value of u one introduces the condition qk 0

for those values of qk" The functions qk(u) resemble the functions

fk(u) and those functions are nearly monotonic, for ' j2 u 2/4

for larger values of u, they are oscillatory. If one imposes the

condition qk(u) = 0 for a value of u where the function fk(u) is

oscillatory, then there is a possibility that larqe errors are

introduced because of a resonance phenomenon. To avoid this, one

will reduce the number of functions gk(n) used for the representation

of ¢ only at values of u for which, for the value of k in question,

fk is nonoscillatory.

If 4 is represented at each value of u in terms of Mathieu

functions gk(q), then one must provide a representation for these

functions, obtained for instance by the procedure shown in Section

IV. This may well be a worthwhile approach. In this case, no

approximations ar encountered in the far field conditions.

The periodicity of $ with respect to ri is alternativel'

expressed by the use of a truncated Fourier series

(u, n) ii, q (u) h , (72)

where

h0(ri) = 2-1/2

h2k(n) = cos(k'), h 2k (r) : sin(k,); k=l...2

In the hypothesis (72) a certain minimum number of functions gk ( 1)

are needed in order to qive a sufficiently accurate ret)resentation

of ¢ for large values of u. We have also shown that the functions

k) can be represented by a Fourier series in _ In tnis senso

the hypothesis Eqs. (71) and (72) are related to each other. All

Fourier components (implicitly) present in Ea. (71) must also be

present in Eq. (72) in order to give a desired accuracy for larc;ke

values of u. This means that the maximum value of k occurrin(c in

Eq. (72) must exceed that occurring in Eq. (71). The number of
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additional terms depends upon the value of 1j, it increases with

1. For the detailed discussion of this report we have used the

function h defined in Eq. (72). Sometimes, however, one might

find it desirable to use different functions for hk(1i). The good

convergence properties of the Fourier series hold only if the

functions to be represented are analytic along a line u = const.

If they have discontinuities (for instance in higher derivative)

or even if they are analytic and strongly peaked (that is, if in

the complex ?)-plane poles lie close to the real n axis) then the

c(onverqence will be poor. For subsonic flows the governing

differential equation has analytic coefficients and $ will be

analytic except at the plate where the boundary conditions may

introduce singularities. For flows with an embedded supersonic

region even the coefficients of the differential equation need

not be analytic (especially toward the end of the supersonic

region). Under these circumstances one will prefer representations

which are more suitable to reflect local properties of ', for

instance finite difference or finite element approaches. This

expresses itself in the choice of the functions hk( n) . For the

value of u, at which the far field conditions are applied, one

deals, of course, with analytic functions. Adopting the notation

of the preceeding section, we write the expression Eq. (72) in

the form

(. . h,( . a u) (73)

where the number of functions h(n) and of components of the h
vector q(u) is finite. The expression Eq. (71) arises by replacing

in this equation hk(n) by gk(r),

Let us first study Eq. (61); in which the far field I
conditions are expressed by means of Mathieu function. They are

written in the form of Eq. (63).
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D B u - B [.h. (, .. ]u 0

The number of equations expressed by this formula equals the number f

rows in the matrices D B and D 2B. This number must be chosen euual

to the number of components in the vector q(u). Let this number be

given by nI . We substitute into this equation t'-e (,xression (64) f,,1

B. Let

" . -). "~ 4 r).. .(4

1 rows .. (74)

Let D and D2 be the -atrices and D and D 2 truncated in uh,_t nanrit

manner. Then one has

DB 1  ' (u)) - 2 B1 q(u); (75

In the preceding section we had characterized the -ar fi,<-d

conditions by the relative eigenvectors and eigenvalues of the two

governing matrices (here D B 1 and D2 B I Accordingly, we consider

the problem

1 B V - vD B V 0 (76)
1 9 2 1

-th th

where v is the Qth eigenvalue and V the eiuenvector. Obviously,

V = B1  e (77)

where e. is the unit vector in the direction of the 9th component cd

-~~ th -
V (i.e., the k component of e. is given by k)  Then
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This result holds whether BI is an infinite or a finite matrix.

k (I k ('1), then bcause of the orthognality of the (k(n)

the mit rix B1 is the unit matrix (provided that the functions q, )

Ve n)-Ral I i zed) . Then

= e

The function (u,n) pertaining to this eigenvector is given by

t t j f

. k(n) . . e9  I g (n)

4 4 4 4,

This is the result obtained in Eq. (66). It holds whether the matrix

B I is truncated or not. In this case no error will arise in the

far field conditions.

Assume next that the functions h;, (r) are the terms of a

.i)uricr series. Let B1  be the tatrl x P'I without trun-:iltion. Thenth11
-mne finds in the j row of the matrix B the Fourier coefficients

if u. The eigenfunctions are given, as before, by the

-1
<i]umn of 91  For the nontruncated matrix

-i TB 1  : 1

wnere T stands for transpose). This is seen as follows. The

+ trt

. .. h. (n)

h 00

mio an element of the vector space (in which V' li,s) i.to a

auction space spanned by the individual functions h i' ) .

-'<,ificallv, it qenerates the functions which has the comnonents

,: "is coefficients of the Fourier decomosition. On the other hand

h (n)
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yields the coefficients of the Fourier decomposition of p(r1 )

because the h. (n) are assumed to belonq to an orthogonal set.

It follows from this description that

+-hh (TO .q.. "v , : Vi- h....h

LI. Hi

and on the other hand that

.h. (2). JL, h ) j I-( : p,

The same h,lds, of course, for any other orthonormal s et q( )

It then follows, because of Eu. (74), that

B4 B h, x (n -h

is the identity operator. Hence, the results announced ahox(,e

T -1
B = B1  (79!

.th

We mentioned that the t row of P jives the components of a

decomposition of g in terms of the orthogonal set h(") . Accordi no
J thto Eu. (77), the eigenvector V. is qiven bv the j colunn of

-1 T
B -- B This means that for nontruncated matrices

*hk(r) • I . ..

In the representation of the flow field discussed first,

(u,' is expressed for each valuc of u as a linear comhina4 i0n
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of Mathieu functions g,(n). The eigenvector V, is then given

by the unit vector e and the function represented by it is

immediately given by gt(n). If 4(u,n) is represented for each

value of u by a Fourier series, then the eigenvectors V. has as

components the Fourier coefficients of the function g.(rl). It

follows that for far field conditions in the form (63) (i.e.,

far field conditions which use Mathieu functions as test

functions) the eigenvectors V obtained with these two choices

of representations for q(u,yj) represent the same function

q() . This holds only for nontruncated matrices,for Eq. (79)

is subject to this restriction.

Eq. (79) is based upon the observation that B 1 is

the identity operator. For completeness, the meaning of the

operator 1 B1 (where B1 denotes the truncated matrix) is

explored in the Appendix.

In practical computations one need not evaluate the

eigenvectors V Z. They are introduced here to describe the

working of the far field conditions. One has accordinq to

Eq. (77)

-I-

V =BI e (80)

Let g9 be the function that is represented by V .

~(nh = h(n) B 1 1  e9

The function (u,n) can be expressed as a superposition of these

eigenfunctions

b~u~n) Z9 (u) 4zjn) ; U(u'n) = (ju)§9 (n)

Then one has for the value of u which gives the curve C
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p. (u)/q, (u) =

where according to 1ps. (78) ,nd (67)

V. 1) D] D? fk u-) /fk(u) ( ]

For truncated matrices the funct ions Ik( ') are in ,tn( ril

not identical with the functions qk (-) for -nit rn.i d,.

For the practical application of the far fi,-1(! ci,' l jt ,I i

(75) one must form the matrix B1 (In Eq. (80) it:- in"r1* th o
is encountered.) We observed above that th(, j row o

consists of the Fourier coefficients of the function ,. ,).
In BI this set of coefficients is truncated.

The coefficients of a Fourier dovolnr-ent ()f- the -m;t-.

j (') have been used previous],, to viny d riIt -I , f

these Mathieu functions. They arise by solxini tr, ri.2',-.

problem Eq. (35) for the infinite matrices ( . ii a in'

these matrices are truncated but only to the e,.t.-,t 'hi :]

Fourier coefficients of those functions n. . ) which ,re :.,,

in the computations are found with a prescribed ,ceura,':.

Actually, a more drastic truncation is admissible ir: t ! 1-, :'t

context. We observed above that the number of terms o-curri-,

in the sum of En. (72) is larqer it one rectresents .! 1 ,

Fourier deveiopment than if one uses, Mat hieu functions "k'

The last few eigenvectors are inaccurate in any case b',ca'.se

of the truncation of B" This can be tolerated because th(u

number of functions hk (n) (of Fourier components) is sunpcs;eI

to be large enough, so that in the (conceptual) decomposition

of ' the last few eicenvectors occur only with very small

coefficients.

The accuracy of the formulation of the far field condit ens

need not exceed the accuracy with which the partial di fferenti al

equation is satisfied. If one approximates the function '(u,,)

by a truncated series of the form (71) then the resulting systm

of ordinary differential equations is simply given bv Eq. (31)

with fk replaced by qk"
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It one represents - (u,,) in the form (72) (in which the

- ns h, ( l) are th( terms of a Fourier series) then one

t V; ,,:s-i: st iti on into the partial diff( rentia] Eq. (27)

-1 1 1 +-2M-q = 0 (82)

here i(u) is a vector valued function whose kth component is

,iiven by the function qk(u) occurring in Eq. (72). The matrix
(i)

>1 is oiven by the matrices M defined in Eq. (36). Some

modification of the indices is needed because the Eqs. (36) take

the symmetries of the problem into account.

<. (82) >olds, in the first place, for the infinite system.

!Iut, because we use in Eq. (72) a Fourier series truncated to n

terms, one must truncate also the matrix M to a size n1 by nI.

(This was the form in which the problem has oriqinally been

r-o ir()(Iammed.

The matrix B1 encountered in the 'ar field conditions (when

!i- uses Mathieu functions as test functions and a truncated

K urier development for the representation of 9), contains in
thits row the truncated set of Fourier coefficients for the

.isthieu function g. h(). They are computed by solvinq the
(i)

oipienvalue problem for the infinite matrices M , Eqs. (36).

Thi.s has been stated before.

It is consistent with the approximation used ii solving

the oartial differential equation if one approximates the rows

of the matrix B1 by the components of the eigenvectors of the
(i) 1

catrices M truncated to the dimension nI by n .

The eigenvalue problem Eq. (35) yields also the eigenvalues

which are used in Eq. (31) to determine fk/fk (Eq. 81) for

the '-alue of u which represents the outer boundary C. The

dtailed procedure is described in conjunction with Eqs. (37)

tYrouqh (41). If one truncates the matrices M W to n1 by n1
matrices, then there will be an error in the later eiqenvalues

an,' .r the values f Such an error is admissible.
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The error encountercdt in thi s p rocoduro ca-n i a ,-

i f one computes the anglle bet we.(n the appr() m,1 t'i In d t h .

eioenxectors (Ik (') and th. rel it iiNj , (.i r,)i- in th( , ", :.

The functions Ik (, ) are qiven iv th ir V.our ier C(A- il..

here combined into vectors. Consider two vect ors V 1 and V 2

with components a. and b,. The scalar product is defined by

V a . b, a . (83)
i1 1

l'il2

The angle is then defined by

[v , v 2 1
cos - (84)'12' Vp] [ 2  112,

In the present case the vector V which represents c;
2 k

has only n1 components. Accordingly, one has a. 0, i

The vector V1 which represent qgk ( r) has an infinite numl r of

components, but the Fourier series converqes very well . The

relative error in the eigenvalues is given by

- 2

The approximate far field conditions of Bayliss, Gunzburqer

and Turkel Eq. (60) arise from the assumption that ' has the form

of Eq. (58). This leads to Eq. (59). In this equation ' is

eliminated by means of the original partial differential equation.

Of course, the requirement that the partial differential equation

be satisfied is needed only for the value of u which corresponds

to the outer boundary C. The approximation to the condition

(60) for cases where the potential is approximated by the

truncated Fourier series Eq. (72) is best found by retracing this

derivation. Eq. (59) then assumes the form
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• • -1 -2 -1

,l' I + (- /4+ (3/4) u + (3/2 i u ) s , (8F)

t d hyf ' 8 2 wh i c" I ',: t *l ',i~ t 1 ,'i. 1 " i.s Ii] ii ,at ed b\' means of I-h!. ( 2 , wh h

Is 0:. ,'>: ,ssi; the part ial differential equation. One

.l -[ -4-2-1 -2
2 u I + I 1 2 ) 1 +u 4,/ )/)+(3,/4) 2 + (3/2) i AI, I I 2 6 0

',u,, . ' '' t sw .t itu t t, t ( vu ( )f u for the contour C. This

1.- t ".' th1 Kri'.' 1 i SS, (GLnzburql;(,, Turke] condition as it

is !:s,.I t h, ract i('al w,-rI-k.

In tills 1 ,iuat ion the truncated matrix M appc ars aqain. For

, oil' - f the effect of this boundary condition (in conjunction

w i i r -,s.,rtt ion of- the flo,' fi eld Lv' a truncated Fourier

srs in we assume that q is represented by a linear combination

t -I' tt i !i ont Ci :envectors V7 (which in tirn qive represcntations

f 1, t}' . I i uactions p ('I) . let the coefficient be q, (u).

-cas> • o the' definition of V one has

.. : ,ts th, truncated matrix M and is the eiqenvalue

which ilis to oC ). Therefore from Eq. (85)

"- ) -4 -2 -l -2<{ 2 11 l i ) < - / )( /2)+(3?/4)u + (3/? ) i u + u ) 0 (86)

The n'lication of the Bayliss, Gunzburqer, Turkel condition

thus has the followinq effect. For the value of u coriespondina

to the curve C one decomposes (u,n) and ' u,' in terms ofu

the ipprnximate ciqenfunctions q- (k) and then postulates that

th, ratio of the coefficients q', (u)/q, (u) assumes the value

(:o:n)utci from Eq. (86). The error encountered in this procedure

is dut, to the deviition of the aporoximate eiqenfunctions CT (,')

-r c (' te ,x,act eiqonfunctions q,(n) and the error in the oiqenvalues

(u) /f' (u). This error is characterized by
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fC (u)/f 9  (u) - ( (u)/l (U)(
, (87)

f (u) /f (u)

This expression must be evaluated for the values of used in

the representation of the solution and for the value of u which

oives the boundary C.

Finally, we study the effect of a truncation if one uses

as test functions the expressions < defined in Eq. (29). They are

a product of Hankel functions in r and trigonometric functions

in e.

It was shown in Section VI that the formulation of the far

field conditions in terms of test functions originates from a

formulation in terms of test functions ,) by premultiplication

with a matrix (Eqs. (61), (62), and (68)). We found, furthermore,

that if one equation of the system Eq. (62) is satisfied for

some value of u, it will be satisfied for any other value of u.

Nevertheless, one may have reservations about applying

far field conditions in terms of functions X if u is small. Along

each line u = const the function x(u,n) is analytic, and, therefore,

a representation in terms of a Fourier series in r is possible.
thThe coefficient of xj.(u,r) appear in the j row of the matrix

1.X (u,(u)

But the functions X are singular at r = 0; one has Xm , r cos M ' .

Along a line u = const one has small values of r for = r/2 and

= 37/2, and there the functions X have peaks, particularly

pronounced for values of u close to 1. Then a considerable

number of Fourier coefficients will be needed to give an

acceptable approximation to X. Because of the truncation of the

Fourier series to n terms the coefficients which are not ncoligiblc

will be disreqaYded.
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Another argument seems to support these reservations. The

representation of a test function P in terms of function X converges

only if r 1 1. The smallest value of r along a line u = const is1 1
reached at the y axis. There r = y = sinh F = 1 (u - u). For

u 1 + /2, there exist points along a line u const where the

development of the functions . in terms of X. does not converge.

(The reason is again the behavior of the functions X.-) One may

then have doubt whether the formulation of the far field conditions

in terms of the test function Xk can replace the formulation in

terms of test functions k" Of course, the underlyino theory

shows that the functions Xk are legitimate test functions.

Substituting the hypothesis (72) (written in the form of

Eq. (73)) into Eq. (62), one obtains, if one uses nontruncated

expressions - ,-

B2 (u) *q (u) - B3 (u) q (u) 0 (88)

where

tU t

B X , .

3Xk ,u

It follows from Eq. (68) and the definition (30) for qJk that

.:c. (75) arises from the last equation by premultiplication with

the matrix ]. We had found that the jth eigenvector of the

matrix D B relative to the matrix D 2B is given by a vector whose

components are the coefficients of the development of g. with

respect to the system of functions h., and that the jth eigen-

:alue is given by f (u)/f (u). The eigenvalues and eigenvectors

remain unchanqed by the premultiplication by [(3) ] These are,

threfore, also the eigenvalues and eigenvectors of the matrix B2

relative to B Using the notation of Eq. (35) (but without the

s~u}rscript i, which is introduced to distinguish between cases

r)f different symmetries), one, therefore, has
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f k (LI

D IB V k Dk (B V k O1 1 ~k - fU(u) D2 B1 Vk

and, Consequently, also

Bf kI (u)

B2 Vk fk(u) B3 Vk = 0

We assert that for the first few eiqenvectors thi:; toiiuat i( I i-

rather well satisfied, even if the matrices B 2 and I i;:i.

vectors Vk are truncated. This assertion is hased on, t . i

that the truncation of the first few eigenvectors ch" o.

eigenvectors only by a very small amount, hecause th, m' i.,t

lost by the truncation are close to zero. The t runci In,- ill

and B 3 to a finite number n I of rows moans simp] ,, t t ,,

considers only the first nI equations, rather thi 1] i f l..

The truncation to a finite number nI ) cf co tons m o I:t .1,, ir

more serious because the elements that are o ri t .- I'rlt

small. However, in the original infinite matr-ix t}"- ' i,

multipliod by the components of the eicienvector whi r 1]

and which are now eliminated because of the trunca t i,,.

Incidentally, the eigenvectors Vk with the, larqcust t io, ,,1 ,

will satisfy the truncated equations only poorly, th .,'

the components lost by truncation are jaroc . W, emol ,  :

that the number ni , which determines ttie size of th, i :<, t , i,

be laroier than the2 number of eiqenfunctinns which ar> tm.<!

to represi nt the sol ution because nI represents tlo fi i,t

gk(i ), which are important for the solution with sufficii it

accuracy. In other words, for n - ill the components \' '1

with n " n I of the vector ak must be neliqible for those

vectors Vk which are important in the solution . W,, thcr.forf,,

expect that a truncation of the matrices B 2 and B is ,riss .

even at fairly small values of u. However, it should be

understood, that because of the peaks which occur in the funct ior

,(u,*) for u close to 1, it is mandatory that the integrations

needed in the determination of the matrix elements of 132 and 13

be carried out with sufficient precision.
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To detormine quantitatively to what extent these observations

.r I-e ()(rct , ono forms the eiqenval ies and eiqenvectors of the

',I (td Mat rix, 139 re I t 1ve to 13 The elements of the matrices. )Mplox be se the funtions k are complex. For a comparison

tilt, h jnv.,etors, on c uses the Hermitian scalar nroduct. If

a ba 1

] a. ' 2 b.
1 1

t heli,

17 2 J " a.b.* (89)1' 1

: , I at r isk ic-n(,tes the conjugate complex. Then we set

[V1 V2cos 1 1 2 (90){V ' ~ i 1/2 [ 2 11/2

+ .i , . wr that 0 only if V1  : const V For the relative

i t i e ( , eltnV alIUeS , w e form

t tk
k k - ---

k --- (91)

I
f 

fk

k



SECTION VIII

NUMERICAL RESULTS

In this section results which are of interest for practical

work are collected.

Figure 1 shows a number of curves u const. They can be

considered as ideal boundaries, for they take the fact into

account that the profile (which is the inner boundary) lies at

or close to the x axis. After the transformation of the flow

field into a strip of the z-,r plane one obtains a particularly

simple representation of the potential which holds throughout the

flow field and displays clearly the dominant effects at large

values of u (or ). This holds for the underlying steady flow

field, as well as for superimposed harmonic perturbations.

Deviations from these boundaries which may be desirable because

of practical considerations are admissible. In fact, the

far field conditions studied here hold for rather arbitrary

boundaries. Which of these boundaries one chooses depends upon

the character of the partial differential enuation. In deriving

the far field conditions the assumption is made, that in the

field outside of this boundary one deals, after the necessary

transformations have been carried out, with the Helmholtz euiuation.

Part of the transformations which lead to the Helmholtz

equation is a Prandtl-Glauert transformation in the physical

plane. The ellipses in the physical plane which by this trans-

formation are mapped into the curve u = 5 are shown for different

Mach numbers in Fiqure 2.

The constant , which appears in the Helmholtz equation

depends upon the reduced frequency ;t' L/u. The curves of

Figure 3 show - versus the Mach number for different values of

This graph allows one to determine the rinqe of values

of which is o Tnractir al imtportance.

It was m 7,r. onf1 thit an iteraitive solution of the }elmholt7

equat ion is p;o. (P it 1 erhis not practical) up to a froquenc',"

4 1
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for which a solution with the homogeneous boundary condition

0 at the plate 4 0 at the far boundary exists. Figure 4Y
Thows the pertinent values of i/i versus u. (The frequency

limitation becomes more stringent as the value of u for the outer

boundary is increased.)

The remaining data refer to the far field conditions directly.

Let us first repeat the leading ideas. The far field conditions

are represented by an infinite system of linear equations. Two

different torms of this system have been considered, namely the

representation of the far field conditions in terms of products

of ordinary and radial Mathieu functions in the q, C system, and

the representation in terms of products of Hankel functions of r

and trigonometric functions of 0. These two representations are

equivalent to each other. In numerical work only a finite number

of equations of these systems can be used. The equations retained

are, of course, individually correct; the approximation lies in

thc fact that only a limited number of these conditions are satis-

f1eed. The far field conditions do not introduce errors, but they

"il ] adiit 'ccrtain errors.

The partial differential equation can be reduced to an in-

finite system of ordinary differential equations. Different forms

,of the systum may arise if different representations are chosen.

We have studied a representation in terms of Mathieu functions of

and radial Mathieu functions of 3 alternatively in terms of a

ievelopmcnt in trigonometric functions with respect to , with

:oufficiunts that depend upon u. Here errors arise by the trunca-

tion c: the system. We have studied how the truncation of the

system rtepresenting the partial differential equation interacts

owith the truncation of the system which gives the far field

c-ond i t ions.

The representation of the flow field in terms of Mathieu

functions converges for the Helmholtz equat-on throughout the

fi(ld. The only effect of the truncation of the system is seen

in the boundary conditions at the plate which in general are
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satisfied only approximately. The representation in te-rms of

Mathieu function clearly expresses the directional character

of the radiation (provided that the inoer boundary i.; v i .

slit along the x axis). _n account of thesfe obstrvitiurls tl!.c :o

presentation of the flow field can he regarded as Lest from i

theoretical point of view. If one uses this representation in

a practical computation then the flow field at a distance can h

approximated with a minimum number of terms. If one applies to

such a ropresentation a formulation of the far field conditions

in terms of Mathieu function, then the far field conditions; ar

perfectly satisfied.

For a procedure of this kind one needs, of course, a repre-

sentation of the Mathieu functions. Table 1 gives for , = 0. z,

= 2.0 and i = 3.5, the Fourier coefficient of the development
of gil) (n) defineo in La. (34), for the five lowest eirenxalues.

Let us consider the coefficients a k as elements of a matrix,

then one has for i = 0 only torms in the main diagonal (for one

deals with the Laplace equation). As -, increases, the important

terms are found in the vicinity of the main diagonal. The i
"spreading out" of the Fourier coefficients does not increase as

one proceeds to Mathieu functions with larger eicenvalues. Th,

presence of off-diagonal terms shows the directional effect of

the radiation. It is present even for the lowest eicenvalue,

but the effecL is pronounced only for larger values of ,. (For

the values of considered, it is fairly weak.) The eicenvalues

are shown in Table 1 underneath in an extra row. They must Lc

used to compute the values of fk (u)/fk(u).

The counterpart to a representation of the flow field and of

the far field conditions in terms of Mathieu functions is a for-

mulation in the physical plane in terms of Hankel functions of

the radius r and trigonometric functions of the an;Ie . Such a

representation would be practical, if the inner boundary Is guiven

by a circle. If the inner boundary is a plate, it introduces an

undesirable singularity at the origin. For a combination of a
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a representation of the flow field in terms of trigonometric

i Unct ins Oi 0 (this is the important part) and of the, far field

-,ondit ions ini teorms of- flankel triqonometric functions, the far

i Ld colidit ions would be pert(vctly satisfied.

We return to the formulation of the problem in the u, j

plane and consider the representation of the flow field in terms

of a development of 1 in terms of a truncated Fourier series in

with coeffLcients that depend upon u. Such a representation

can express a solution in terms of Mathieu function which we

consider as optimal only approximately. This fact is reflected

in the expressions for the flow field that are compatible with the

far field conditions. In the above analysis we have adopted the

following characterization of the far field conditions. The

functions ' and : are represented as linear combinations of the

relative eigenfunct ions of the matrices B1 and B., the ratio of

the coeffic-ients of corresponding terms in the linear combina-

tions lor : and u is then given by the relative eigenvalues.uI

For the nontruncat(icd system (in any representation) the eigen-

functions are Mathieu functions of !, the relative eijenvalues

ar-, ciyei by the ratio f(u)/f' (u) obtained from the radial Mathieu

functions. Table 2 refers to a representation of the flow field

in terms f tiijoiiometric functions in T while the far field con-

ditions are expressed by means of Mathieu functions. (We have

restricted ourselves to solutions which are symmetric with respect

to the ; and the y axis and then restricted ourselves to the first

five terms, the last term represents eight cosine waves over the

whole contour, u = const.). While the Fourier expansion of the

Mathieu function is obtained by the eigenvectors or an infinite

matrix one now deals with the eigenvectors of the same matrix

truncated to the size given by the number of terms in the flow

field. The error in the functions admitted arises because the

eigenvectors and eigenvalues are not the same in the two cases.
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Table 2 gives for the 11 0.5, 1i = 2.0 and , 3.'%, the

angle between the exact and the approximate eiqenvectors and th(

discrepancy in the eigenvalues. One cannot expect Perfect ,urec -

ment for later eigenfunctions, because the truncation of the

Fourier series suppresses Fourier terms which are important in

the exact eigenfunctions. The table shows that the first few

eigenvectors and eigenvalues are indeed very close to tne exet

values. The errors increase with p. The eigenvalues found here

are needed in order to determine from Eq. (37) the ratio

fk/(u)/fk' (u) for the value of u chosen for the outer bouie'n.,.

It would be equally justified if one computes the values o

fk(u)/fk? (U) for the infinite matriccs. Then no error in tti(

eigenvalues would be encountered.

If one uses the same representation for the flow field r:s:

expresses the far field conditions by a truncated system of ii.nk.o

functions in r and trigonometric functions in - one will oLAta p.

slightly different results, because of the diffrrene in th .

field conditions. Table 3 shows for diffrrent values of anu

of u the angle of corresponding eigenvectors fe)r tht runcatcd

and nontruncated matrices B2 and B 3 and the err(i ai t -h eic:;-

values. In this case the evaluation of th( watitr i -,ns is

critical. The matrix elements are inteurals ever riiic nal't ,:

functions of n. In this case the trap[)ezojdal rul Lvcs e-:.el -ni

results, but thie integrands are rather peaked tor I 1Icr

of u and therefore the inteqration interval must I- ,h( s .]

enough. Tables 3 have been computed for an interval rf int, ,i-

tion 7/32 but actually for the values of u considered th( re.ilts

are the same if one uses the interval i/16. Serious di.-r-: re.r'-i

arise however fo'- an interval /8. The shortest waco ] ',

in the representation of , by a Fourier series in

5 terms is /4. An interval '/8 would (live j ust 2

full wave. For smkl1 value.s (- u th( peaednci : .

is increased because of the character of the flank ] , .

then smaller integration intervals will probanhli b ,, ,

Howeve--r, 11 4 is probably smal II enout; h for al I 1;r.ct 1,7,
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purposes (see Fig. 1). The deviations from the ideal case are

significant only for the highest eigenvalue.

''abl(, 4 shows for It = 3.5 the angle between the eigenvec-

tors for a flow field represented by means of trigonometric func-

tions in u with the far field conditions expressed either by

Mathieu functions (ordinary and radial) or by Hankel functions

in r and trigonometric functions in 0. The angles are extremely

small; for smaller values of p, they are even smaller). This

shows that the deviation of the eigenvectors from their ideal

values shown in Tables 2 and 3 is primarily due to the discreti-

zation o f the partial differential equation and not to the form

of the far field conditions.

The daproximate far field conditions of Bayliss Gunzburger

nInd Turkel are mainly of interest if one represents the flow field

in terri:s of a truncated Fourier development. We found that the

eiqonfunction decomposition which one finds for these boundary

(~3fl olls is the same -s if one imposes the far field conditions

in the, orm of a truncated system of Mathieu functions and these

,,rrors are already shown in Table 2. The main error occurs be-

, (AtsC of th & falsification of the ratio fk(u)/fk (u). Table 5

shiows this etLor for kJi-fcrent eigenfunctions, different values of

anid different values of u. As expected the error is small for

sifticiently large u and .. Assume for instance that errors in

the fourth and fifth eiqenvtctors are unessential, because their

contrI LItion to the solution is snaII and that a falsification

)I !/f' ftm the third tigenvec'tor by .05 is admissible, then

Loundary conditions cannot be used for ii = .5 and u as large as

I ;, they can be applied for 2 down to u 5 and for p = 3.5

d %ow-.n to u -3.
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SECTION IX

GENERAL OBSERVATIONS

One will ask to what extent the results of the present

analysis can be carried over to more realistic problems.

The transformations which in the present case lead to the

Helmholtz equation can be useful for higher values of ;j, because

it reduces the waviness due to waves that travel upstream.

The choice of the boundary of the computed flow field as a

line u = const arises because of the shape of the inner boundary

(here the plate). It can be expected to be advantageous for all

two-dimensional airfoil problems, but some modifications are

admissible.

The far field (especially its directional characteristics)

is best represented in terms of Mathieu functions. This is a

consequence of the shape of the inner boundary.

The idea of representing in terms of Mathieu functions

throughout the flow field requires, of course, that one employs

coordinates (or a mesh) given by the u, r-system. The idea of

conformal mapping has been used even in the transonic case, there-

fore, a precedent to this procedure exists. The use of a Mathieu

function development (as well as Fourier series develonment in )

may offer difficulties in the vicinity of the air foil, where the

function may be rather peaked (because the character of the

boundary conditions, and also because of the discontinuities which

may be encountered in a transonic flow field).

The representatives of far field conditions in terms of

Mathieu functions (even if the boundary is not exactly a line,

u =const) is quite feasible (it qives best accuracy with a

minimum number of terms).

The representation of the flow field in terms of a Fourier

development in requires a few more terms than a representation

49

-'A-



in terms of Mathieu functions, if one wants to capture the direc-

tional characteristics of the far field equally well. We men-

tioned above that in the representations of the field close to

the profile both forms have the same limitations. One expects

t,.it other representations of the flow field will have the same

requirements for the representation of the distant field as a

Fourier representation. They may have advantages in the vicinity

of the profile.

Errors in satisfying at the far field conditions originate

mainly by the truncation needed in the partial differential

equation. Whether one represents the far field conditions by

means of Mathieu functions or by Hankel functions in r and tri-

,;onometric functions 0 has practically no effect, if the outer

edo of the computed parts of the profile is given by a line

U - 4.

The approximate far field conditions of Bayliss, Gunzburger,

-ind Tui-kel can be applied only if j and u are sufficiently large.
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APPENDIX

According to Eq. (71)

B,B1 + )] [ h rm)

n -1

Let S h and S the function subspaces spanned respectively by the

function h.C(n), and j = 1k = 1...n I . The matrix
gk(r1),

.. . t (TI

maps a point of the n 1 -dimensional V space into an element of the

subspace S The matrix

hk (n) • h (T))

is the identity mapping in the n -dimensional V space. The matrix

*h k . . (.
k~LiL

gives the orthogonal projection of a general element

of the function space into the space Sh' Using Eq. (79) one

readily demonstrates that it has the property of a projection

operator

2
P = P

Corresponding results hold for the set of orthonormal functions

gk(n). Now we consider the sequence of mappings given by
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Brj i V h T1 
° °. ... k 01) . .. j V

.. . i f ' L*,- • • Li
= gh (n ) h. h () ( q) a I

3~ k .

- ± k L j .. . . . . .

)estarts, of course, on the riqjht.

h. V
i

Tives aij tlement ot the subspace S h*The premultiplication by

.. . ,l 7' 21

;'rI jc'ts tlis element into the subspace S . The subsequent~g
:r ' Ill t i l i('It ion Lv

* *hi (' ) *.. h , (t)h

from S(, into S The premultiplication by

I. (')I

r et . t h- K'IIri(,I- c()(,ffici onts. They form an element of the

TV:; i -, '}', } r~1,c t i, ens O(ccurrirnm here are orthoqonal B will be

h. .. ,i( .f 11S S .o Same.
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LEGENDA TO FIGURES

Vig;ure I Curves u = const in the x,y plane after a Prandtl-
Glauert Coordinate Distortion has been carried out.

Figure 2 Lines u = 5 in the x,y plane for different Mach
numbers, if the Prandtl-Glauert Coordinate Distortion
is not carried out. Such curves constitute ideal
outer boundaries for a computed flow field.

Figure 3 Values of o for different reduced frequencies ii' as
function of the Mach number.

Figure 4 Values of u for which, at a given value (1/1) an
iterative procedure will theoretically converge (the
admissible region has been shaded). It is assumed
that in the iterative procedure the values of $ at
the outer boundary will be recomputed in each iteration
step and then kept fixed during the flow field
computation. The theoretical limit arises for a
chosen value of u at the lowest frequency ;j for which
a standing wave flow with = 0 at the outer boundary
and 0 ') at the inner boundary can arise.
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Tan le 2 A characterization of the I'ar Field E:rroers for a
1-'low Field expressed by Trigonometric Functions in

and Far Field Conditions formulated by meais ot
Mathieu Functions.

The table shows the ancjle between thc relative
oi genvector of the two matrices 'hich appea-r in tnc,
far field conditions computed once for a perfect
representation of the flow field and a second time
for a Fourier series truncated to five terms. In
practice these eigenvectors are computed from the
matrix which give a Fourier representation for
Mathieu Functions. The infinite matrix has been approx,,-
, ated by a nine by nine iitri :, the approximate cjrg,rn-

vectors arise from a- matrix truncated to f e Ly fic.
Also ,iiven are the relative errors in the ei3enva ace
for these matrices. These eigenvalues ser-e to deter-
nine the value of f (u) /f ' ( u) fron La . ( 35) . The vu alWs
f(u),/f' (u) are the ei genva les which appear in ti-e c -
terization of the far field conditions.

Table 3 A Characterization of the Far Field Errors for a Flow
Field expressed by Trigonometric Functions in an
Far Field Conditions given by Hanke] Functions in the
Radius and Trigonometric Functions in the Angle in the
Physical Plane.

The table shows the angle between the relative cigen-
vectors of the two matrices which appear in the far
field conditions computed once for the perfect
representation of the flow and a second time if the
Fourier series is truncated to five terms. The error
in the eigenvalues refers to the matrix which appears
in the far field conditions.

Table 4 Angle between the Relative Eigenvalues between the
Two Matrices which appear in the Far Field Conditions
for a Flow Field represented by a Truncated Series in
Trigonometric Functions in r The far field conditions
are expressed once in terms of Mathieu functions and
a second time in terms of Hankel functions in the
radius and triqonometric functions in the angle.

Table 5 Relative Error iii the Eiqenvalues for the conditions
of Bayliss, Gungburger and Turkel, for a Flow Field
Represented bv Trigonometric Functions in T. The Error
in the Higenfunctions is the Same as in Fiqure 2.
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TABLE 1*

*See Legenda on page 59.
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TJB',1L 2*

ERROR ERROR ERROR
MU= t5 OF MU= 2.0 OF MU = 3.5 OF

N ANGLECRAVIANS) EIGENVALUES ANGLE(RADIANS) EIGENVALUES ANGLE(RADIANS) EIGENVALUES
..................................................................................................--

.00000 .00000 .00000 .00000 .00001 .00000
--- -- -- - -- - -- -- - - -- -- - -- -- - -- - -- - -- - -- -- - -- - -- - -- -- - -- -- - - -- - -- - -- - -- - -- --. ... . .. .. . .. .. . .. . .. . .. .. . .

2 .00000 .00000 .00000 .00000 I .00004 ,0000
---------------------------------------------------------------------------------------------------

3 .00000 .00000 .00001 .00000 .00035 .00000
... .. . .. .. . .. . .. .. . .. . .. . .. . .. .. -.. . . .. .. . .. .. . .. . .. . .. . .. . .. . .. .. . . .. . .. ..- I.. . ..

4 .00000 .00000 I .00056 .00000 I .00524 .00005

5 .00174 .00000 1 .02777 .00043 1 .08480 .00404

>o, Leqenda on pago 59.
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TABLE 3A*

.... . IN ..i.. .

E- I GEN V A L UJ 1i:,!

1 1:1. l:F.NV FCTI RS .1: ANGtI.. ( i::(RA i:I:NS) RNlA IT VA.".S ENIOR

I},: ,00000 .00000I
..0000 00000

3 *00000 .00000
4 *00000 .00000

.00174 00007

10. 0 1. .0000 .00000 1
1? .00000 .00003
3 . 00000 .00003
4 *00000 .00001 .
1 001 74 .00003 I

B * 0) 1. * )0000 00000 1. I

.? . 00000 .00003 
3't . 00000 * 00002

4 .00000 .00001 
S00 174 . 00007

6 0 1 )00000 * 00003

? .00000 * 00004
3 .00000 .00002
4 .00000 .00002

[:;.00174 • 00012

4. ) 01. .00000 o 00007
2.00000 .00004

3 *.00000 .00002
4 *.00000 * 00002

S.00 1 '00023

*Sec0 Legcnda on page 59.
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TABLE 3L*

"0 o 0 16 0 0':

....... . .. ..)0 <

*.1 0 ,):) .O (I),'

:/ .00009

I.0,01 o 0 ,:0,; .0 ,0000 1
I0.(00 I , 000 ..0

3 ,000, I ,00 Oo()

80. 0 1 .000() .000)(.

. 0000!. * 00001,^. 3 o• 1

4 * 000',6 , 0000
QI! ,( 27 / 7 0000':. I

e)6.0 , .00000 , 000W5;
2 00000) o.00006
.3 00001 ,0000:1

4 * 0)0(.) 8 , 0 0 ))
'I1 ". 0 :!27 .0029!. I :

4,0 J . 000)00 ,.00.1 0
S00000 . 0000

3 0300001 ,0000
4 0002 .00002

Y H 0 11. .0042',1.

*See Legenda on page 59.
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TABLE 3c*

.18Ii (IEU(fl t JL S}
' I I if t[ 7'j 8F<+ II 088 1 ' f++lUiI CIIJI: ) kEi...A] C .io I.+ lI,:IfJR

... ... .....

,, ,0 *00000

'O I *. .00000
:3 Q 0 .00000

00130
O0 H ,1 .0002Y
.00 ) K00007

3 000):I .00009
0040 4*000003
0,. .... 0 0 020

" . 0000 1 .00003
)00,0 • 00002

00004

,. ,, 084,8/ .7 00039

C, * I * 00001 • 00003

2 * 00005 .00007
4 000',: .00003

4 ()0Q,2 ,f.i) * 00002
Er: . 08487 * 0003/

0 0 4 00 . .0 00 0

.. ,,0005 .00007
3 .00040 .•0000,2
4.00,.,,.. .0000'3

4 ... ..... .... . .. 0 0 0 0 .... .. 0 0 00....
,5 . 08491.I .01..856

*See Lcgenda on page 59.
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TABLE 4*

i)000 .

6 . :1.0 !

2 00001I
000.1 0

4 0 (0 I..1

'ItO 0'' :

S 04,. .0001 I

4.0 
, ()( I

4 0 :I, ,000

:3 .000 2.1

00200: ,00''(IO

*See Legenda on page 59.
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